
地球生物相概說

主要陸域生物相的分佈

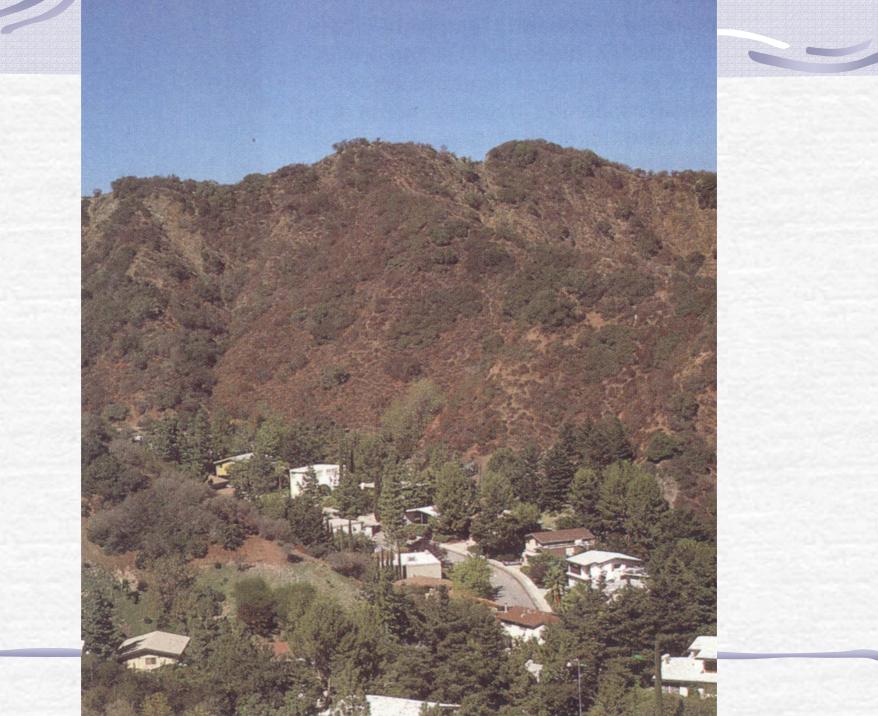
雖然在圖片中所繪的陸域生物相有著明顯的界限,不過實際上生物相是逐漸從一者轉變爲另一者,有時會有大面積的重疊。熱帶(tropic)是指北迴歸線與南迴歸線間的低緯度地區。

熱帶森林 Tropic Forest

熱帶雨林有明顯的垂直分層,樹冠層的大樹組成 最上方的層次,樹冠層通常濃密使得只有少許的 光線能穿透到達下方的地面。當缺口因爲樹木傾 倒而出現時,其他的樹與木質藤本植物快速生 長,競爭光線與空間以將缺口塡滿。這些大樹覆 蓋著附生植物,如蘭科與鳳梨科植物等。降雨是 決定一個地區植被牛長的主要因素。在有明顯 乾季或是降雨少的低山地區,主要出現的是熱帶 乾旱森林(tropic dry forest),此地區的植物以帶 有各種棘刺的灌叢和多肉植物爲主。在有顯著的 乾季與濕季的地區,常可見到熱帶落葉林。

稀樹草原 Savana

肯亞稀樹草原是許多大型草食動物與其他捕食者 的表演舞台,但事實上此地區與其它稀樹草原中 的主要草食者是昆蟲,尤其是螞蟻與白蟻。草與 稀疏散佈的樹木是主要的植物,火則是重要的非 生物性組成,而優勢的植物是滴火性的種類。草 與非禾本的草本植物(小型闊葉植物)在雨季繁榮 的生長,提供動物豐盛的食物來源。但大型的牧 食性動物必需在週期性的旱季時遷移到較綠的草 地或是稀疏分佈的水塘地區去。


沙漠 Desert

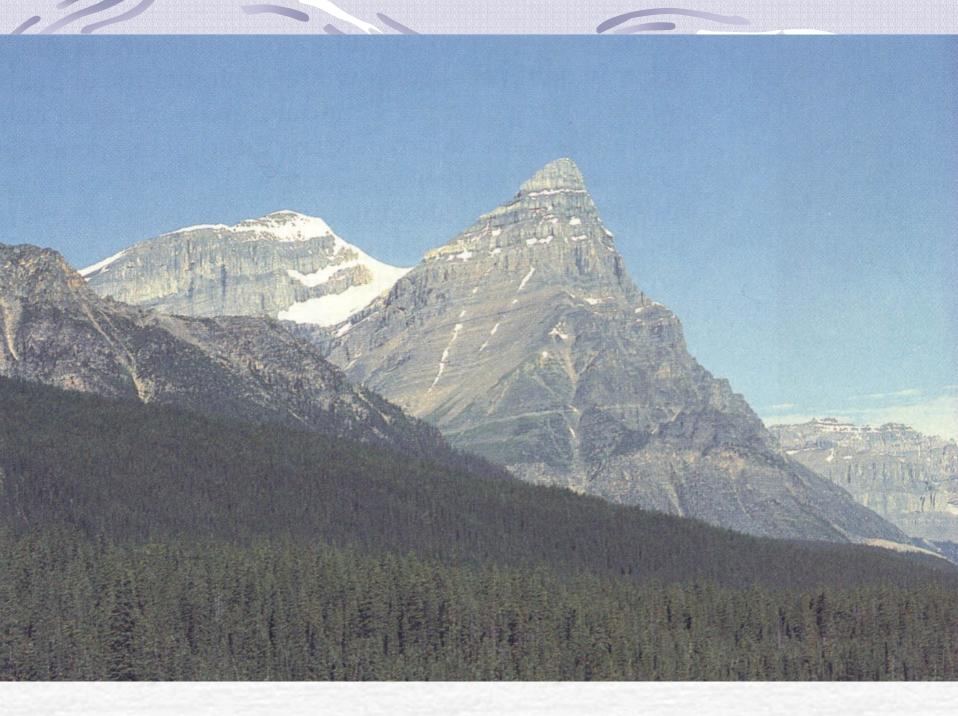
每年少於30cm的降雨是決定一地區成爲沙漠的主 冈。有些沙漠的表面是十壤且白天時溫度高達 60℃以上,而有些沙漠則相當的冷。照片中位於 亞利桑那州南部的索諾蘭 (Sonoran)沙漠的特色 是巨大的巨柱仙人掌及深根性的灌叢植物。沙漠 植物與動物的演化性適應包括一系列的儲水機 制, 巨柱仙人掌的"皺褶"能讓擴張使植物在濕季 時吸收水分;有些沙漠鼠類則不喝水,只從代謝 他們所吃的植物種子中獲得所需的水分。能防止 動物與昆蟲啃食的保護性的構造,如仙人堂的棘 刺與灌叢植物葉片中的毒物等,普遍出現於沙漠 植物上。

夏旱灌叢 Chaparral

在中緯度的海岸地區,冬季短而有雨,夏季長 而乾熱的夏旱灌叢中優勢的植物是濃密多刺目 常綠的灌木。如加州灌木地的夏旱灌叢植物是 適應且依賴週期性的火。乾而木質的灌木常被 閃電與人爲疏失而點燃, 在加州南方峽谷與其 它地區造成夏季與秋季的灌叢火災。有些灌木 產生的種子只能在火災的高熱後發芽。而保存 在抗火性根中的養分使他們能快速的再抽芽並 利用火災釋出的營養。

溫帶草原 Temperate grassland

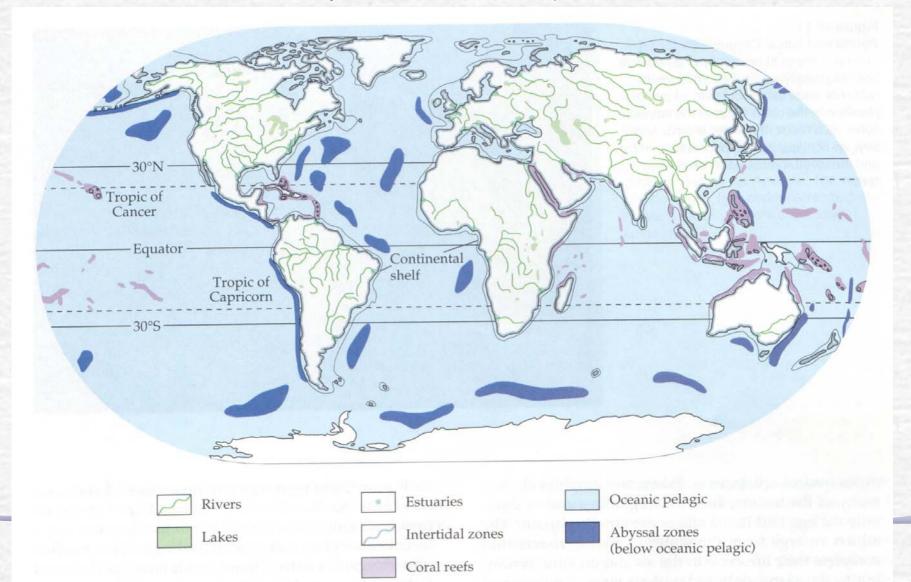
南美洲無樹大草原、匈牙利普士達草原、阿根 廷彭巴草原、俄羅斯乾地大草原與北美洲的平 地和高草大草原等都是溫帶草原。維持這些草 牛地的關鍵是週期性的乾旱、偶發性的火災與 大型動物的牧食等,這些都能阻礙木診灌叢與 樹木的建立。溫帶草原,如堪薩斯州的高草草 原,一度曾覆蓋北美洲中部地區,由於草原的 十壤層既厚又富含養分,因此成爲富饒的農耕 地。美國多數的草原已被轉變爲農度,今日只 剩下極少數的天然高草草原存在。


溫帶落葉林 Temperate deciduous forest

濃密的落葉樹群是主要的景觀。溫帶落葉林出現在 濕度足以支持大型樹木生長的中緯度地區,他們比 熱帶雨林要開闊些且樹也較矮,但成熟的溫帶落葉 林仍有明顯的垂直分層,包含一至二層的樹,一層 不受破壞的灌叢,及一層草本植物。在冬季溫度太 低無法行有效的光合作用前,落葉林樹木會掉葉, 也防止水分自葉片蒸散出去後無法從冰凍的土壤中 獲得充足的補充。許多溫帶落葉林的動物也會進入 冬眠的休眠期,一些鳥類則遷移至較溫暖的地區。

北方針葉林 Coniferous forest

帶有球果的樹,如松樹、雲杉、冷杉與鐵杉 等,支配著北方針葉林。美國太平洋西北部的 海岸針葉林,華盛頓州西部的奧林匹克國家公 園,其實是一個溫帶雨林。來自太平洋溫暖潮 濕的空氣支持著這個獨特的群落,也一如其它 針葉森林般只由少數幾種樹佔優勢。橫跨北美 洲北部至歐亞大陸,連接極地苔原的最南界, 北方針葉林,或稱爲針葉林(taiga),是地球上 最大的陸域生物相。針葉林冬季時降雪極多, 許多針葉樹錐狀的樹形能降低過多的雪堆積而 壓斷枝條。



苔原 Tundra

水凍層(永遠冰凍的底層土壤)極低的溫度 與強烈的風是阿拉斯加中部極地苔原沒 有樹木或其他高大植物的主因。雖然極 地苔原的年降雨極少,但水無法穿透下 方的永凍層而在夏季時保留在表土層上 形成淺水塘。苔原覆蓋廣大的北極地 區,約佔地表面積的20%。強風與低溫 創造出稱爲高山苔原的相似群落,出現 在包括熱帶在內的各緯度高山地區上。

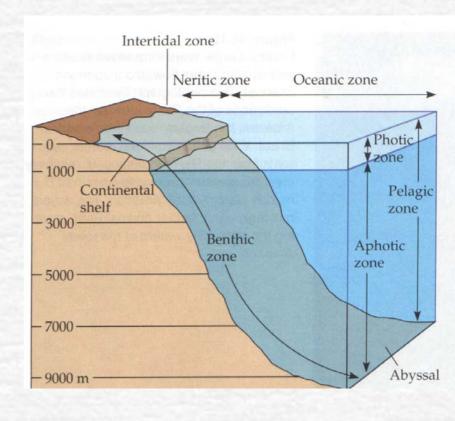
水域生物相

淡水生物相

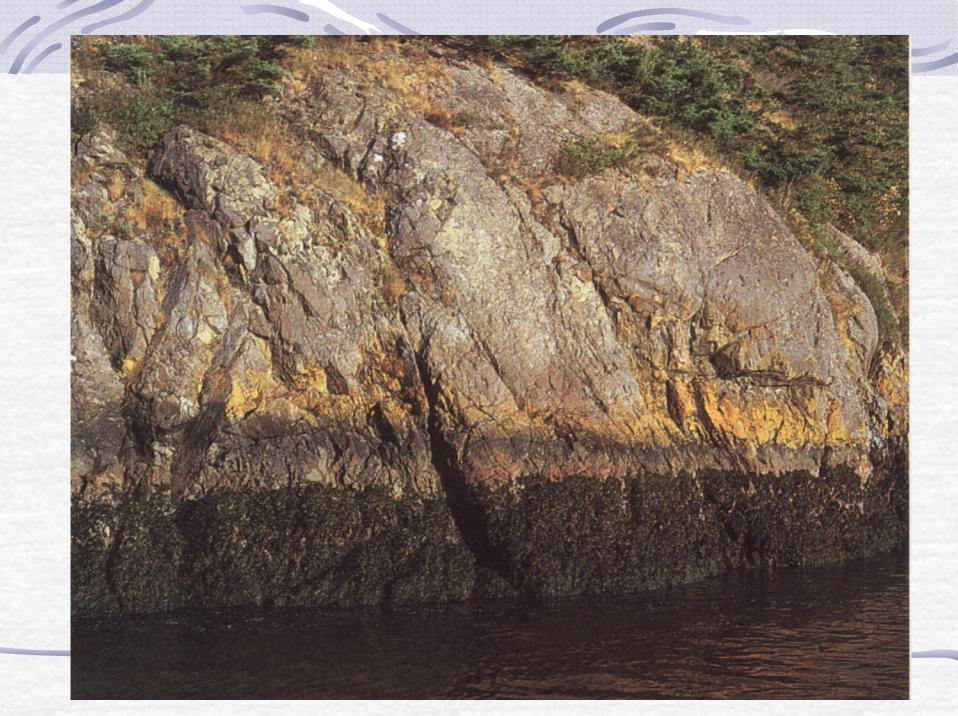
- 了貧養性湖泊,如西伯利亞的貝加爾湖(Lake Baikal),是一個養份貧瘠且相對於深度而言,表面積較小的湖。底層沉澱物有機物質分解的速度緩慢,限制底棲生物中細菌的族群量,而湖水中缺少礦物營養也限制湖沼區中浮游生物的光合作用;使得湖水清澈且富含氧氣,且通常有多樣的魚類與無脊椎動物生存。
- 優養化湖泊,如賓州波卡諾山中的佩克湖(Peck's lake)是一個富含養份且相對於深度有較大的表面積的湖泊。可利用的營養供應高效率的光合作用,產生比貧養湖更暗色的水。湖底所含的高量有機物在湖底區與底棲區產稱生高速的分解作用。

濕地

- 鹹沼地通常終年被水所淹沒。主要優勢植物是挺水性且莖與葉都伸出水面的植物;包括睡蓮蓮、蘆葦、及香浦等植物。其他不同類形的濕地尚有沼澤(木本植物爲優勢)、泥炭沼(優勢者爲泥碳苔),及季節性的水塘。
- 生產力極高但受嚴重威脅的生態系
- 泛指水深六公尺以下的環境


河口

- 河流出海口與河水流入的海洋間的關係極複雜且親密。是淡水與鹽水交界的地區, 為生態交會帶
- 生產力極高,由底棲微生物,浮游植物與大型植物為主要生產者,為沿海魚蝦貝等之育幼地
- 不幸的是河口的陸地常因人口與工業化 的程度,以及來自河流的污染而使其不 再適合於許多植物與動物生存


海洋環境的分層

海洋環境可以根據三種物 理條件來分類,即光線穿 透(透光與無光),距岸遠 沂與水深(潮間、沂岸與 海洋區),以及是否爲開 放水域或海底(大洋與底 棲區)。深海區是深海的 底棲區域。生態學者常將 兩個名稱結合在起以,如 海洋大洋區,來指稱特定 的區域生物相。

潮間帶

低潮期的奧瑞崗岩岸潮間帶顯示其上藻類與動 物的垂直分層現象。在三個層次中的生物密度 大略與該區沉入水中的時間多少呈比例;在最 上層的生物—嚼食的軟體動物、懸浮覓食的藤 壺、以及少數的藻類—只有在最高潮時才會沉 入水中,且有多種適應來防止脫水與渦熱。中 層區域,在高潮時沉入水中而在低潮時暴露在 外,有多種不同的藻類、海綿、海葵、軟體動 物、甲殼類、及棘皮動物與小型魚類在此生 存。而底層的潮間帶只有在最低潮的時候才會 露出水面。此區中密覆生長的海草是極多種類 的無脊椎動物與魚類的澼風港。

珊瑚礁

- 珊瑚礁具有極多種類的 微生物、無脊椎動物與 魚類生活在珊瑚與藻類 之間,使珊瑚礁成為地 球上最多樣與最多產的 生物相。
- 雖然珊瑚礁也被稱為海 洋中的熱帶雨林,但其 所受到的破壞及傷害遠 比熱帶雨林來的嚴重。

底棲區

深海噴泉群落。底棲區的牛物組成隨海水深度 而劇烈的變化。海底噴泉群落,最早於1970年 代末期發現於2500公尺深的海中。這些群落被 發現於海底擴張的海床中央,近噴泉口處約有 一打已鑑定的化學自營性原核微生物生產者, 能利用氧化熱水與溶解性硫酸鹽(SO42-)形成的 硫化氫來獲得能量。群落中的動物爲大管蟲, 有些可長至1公尺長。顯然他們是被這些生存 於管蟲體內的共生性化學自營菌所滋養生長 的。其他的許多無脊椎動物,如節肢動物與棘 皮動物等,在噴泉口附近亦相當常見。

